

이오나이저 적용 사례

이 수 테 크 노 제 전 기

ESD Control Standard ISU-TECHNO Company

이수테크노 제전기

(08639) 서울시 금천구 시흥대로97 SHI센타 8-202

Tel: 02-808-3338 Fax: 02-808-3335 URL: www.isu-techno.com

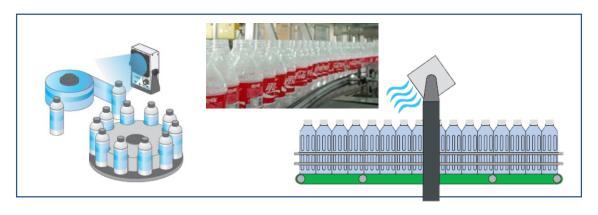
E-mail: jgkim@isu-techno.com Direct: 010-8866-2331

Isu-techno IONIZER / Sales biz dept.

(08639) 8-202 Siheung Industrial Complex Geumcheon Seoul Tel: 02-808-3338 Fax: 02-808-3335 URL: www.isu-techno.com

E-mail: jgkim@isu-techno.com Direct: 010-8866-2331

Rev no : 2024 - 8


1. 적용공정 : 보틀(용기) 이송 공정

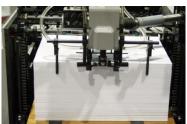
2. 적용산업: 제약, 음료, 화장품

3. 트러블 포인트: 이송 과정에서 생기는 마찰 정전기

小 이송 공간내 정전기력 부착 병목 현상 발생

₩ 용기내외부 이물 부착 현상 발생

4. 적용 IONIZER

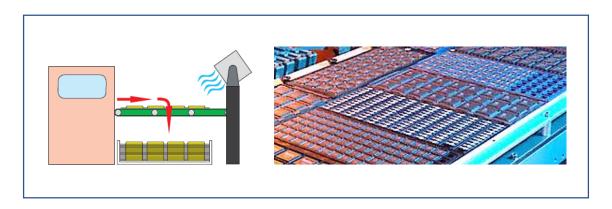


- ♥ 이송 공간내 병목 현상 제거
- ਂ 용기에 이물 부착 현상 발생 제거
- ✔ 장입 과정에 내용물 미세 비산 발생, 기포 발생 제거

- 1. 적용공정 : 시트 이송 공정
- 2. 적용산업: 디스플레이, 인쇄, 제지 산업
- 3. 트러블 포인트 : 이송 과정에서 생기는 마찰 정전기

4. 적용 IONIZER

- ✔ 정전기제거로 픽업 불량 제거
- ❤ 정전기적 인력 제거로 2장 픽업 없음
- ❤ 정전기적 척력 제거로 적재 위치 안정적


1. 적용공정 : 트레이 이송 공정

2. 적용산업: 반도체 산업

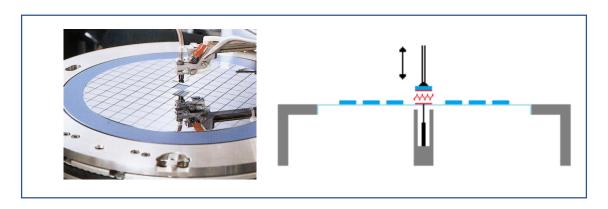
3. 트러블 포인트: 이송 과정에서 생기는 마찰 정전기

◆ 전자적 특성 파괴

사 위치 틀어짐, 제품 겹침

4. 적용 IONIZER

- ❤ 전자적 특성 파괴 없음
- ✔ 정전기력에 의한 위치 틀어짐, 제품 겹침 없음
- ❤ 제품 이물 부착 없음



1. 적용공정 : 다이(소자) 본딩 공정

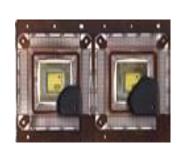
2. 적용산업: 반도체 산업

3. 트러블 포인트: 다이(소자) 픽업시 생기는 박리 정전기

♣ 칩의 전자적 특성 파괴

4. 적용 IONIZER

- ◇ 칩의 전자적 특성 파괴 방지
- ❤ 얼라인먼트 위치 틀어짐 방지
- ❤ 쏘잉 잔유물, 미세 접착 입자 비산 억제


1. 적용공정 : 몰딩, 트림, 포밍 공정

2. 적용산업: 반도체 산업

3. 트러블 포인트: 작업시 발생하는 마찰 정전기

♣ 칩 회로의 전자적 특성 파괴

₩ 배출시 금형에 부착 되어 작업성 저하

4. 적용 IONIZER

- ✔ 칩 회로의 전자적 특성 파괴 방지
- ❤ EMC 표면 마찰정전기 발생 억제
- ♥ 배출시 금형에 부착 방지로 작업성 향상

1. 적용공정 : 칩 마운트(SMD)공정

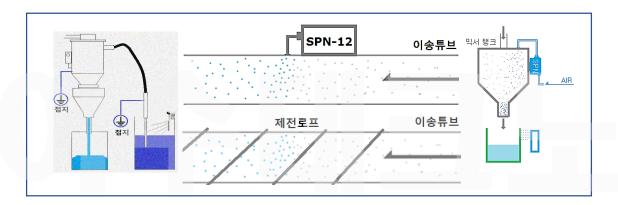
2. 적용산업: 반도체 산업

3. 트러블 포인트: PCB 정전기, 릴 공급기 박리 정전기

→ PCB 자체 정전기로 마운트시 소자열화, 위치 불량

₩ 공급기 릴테이프 정전기로 부품 비산

4. 적용 IONIZER



- ✔ PCB 자체 정전기로 마운트시 소자열화, 위치 불량 제거
- ※ 공급기 릴테이프 정전기로 부품 비산 제거
- ❤ SMD M/C 내부 누적 정전기제거

- 1. 적용공정: 파우더(분말) 이송 공정
- 2. 적용산업: 제약, 화학, 식음료 산업
- 3. 트러블 포인트 : 이송 과정에서 생기는 마찰 정전기

4. 적용 IONIZER

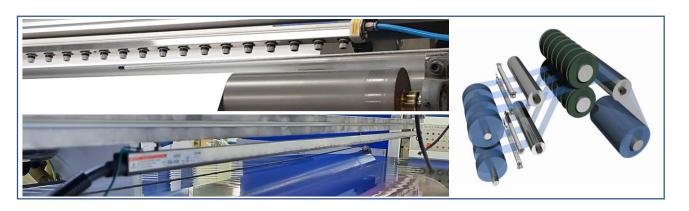
- ✔ 마찰로 인한 분체 응집 현상 제거
- ❤ 전격으로 인한 탄흔(Esd Mark) 발생 제거
- ❤ 배관내 부착 감소 수율 증대

- 1. 적용공정 : 도장(PAINTING) 공정
- 2. 적용산업: 자동차, 플라스틱, 산업용 외장재
- 3. 트러블 포인트: 이물 부착으로 도장면 불량 발생

 - ◆ 도장면 두께 불균질 현상 발생

4. 적용 IONIZER

- ✓ 도장면 이물에 의한 요철 현상 원인 제거
- ❤ 도장면 핀홀 (Pin Hole) 현상 원인 제거
- ♂ 균질한 도장 표면 확보



1. 적용공정 : 필름 및 시트 생산공정

2. 적용산업: 일반산업, 포장산업

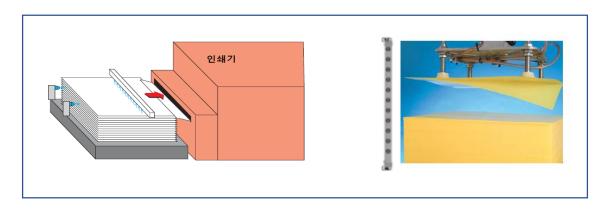
3. 트러블 포인트: 작업성 저하, 피로도 증가

 제품의 접힘, 중심이동, 말림 현상 발생

4. 적용 IONIZER

- 절비 전장부 정전기로 인한 오작동 현상 없음
- ☞ 제품의 접힘, 중심이동, 말림 현상 발생 없음
- ✓ 스파크 현상이 없음으로 안전한 작업 가능

1. 적용공정 : 인쇄 급지(언로더) 공정


2. 적용산업: 일반산업

3. 트러블 포인트 : 롤러급지, 픽업급지시 트러블 발생

♣ 이중 겹침 급지 현상 발생

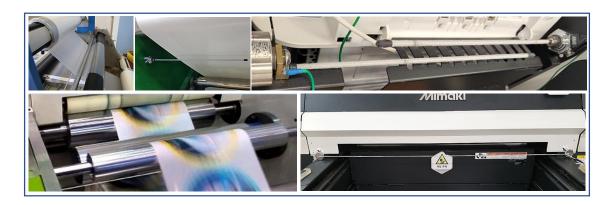
♣ 픽업시 인쇄지 낙하 현상 발생

◆ 인쇄지 위치 틀어짐 현상 발생

4. 적용 IONIZER

- ◇ 이중 겹침 급지 현상 발생
- ♥ 픽업시 인쇄지 낙하 현상 발생
- ✓ 인쇄지 위치 틀어짐 현상 발생

1. 적용공정 : 인쇄 공정


2. 적용산업: 일반산업

3. 트러블 포인트: 인쇄 트러블 발생

ౡ 잉크 튐, 번짐 현상 발생

♣ 용지 말림 (Jam)현상 발생

₩ 얼라인먼트 (위치) 틀어짐 현상 발생

4. 적용 IONIZER

- ✓ 잉크 튐, 번짐 현상 발생 감소
- ✓ IONIZER 사용전 큰 정전기(70KV~20KV) 사전 감소용

1. 적용공정: 패드 마킹 공정

2. 적용산업: 일반 산업

3. 트러블 포인트: 패드와 인쇄물 사이의 박리정전기

→ 잉크번짐 현상 발생

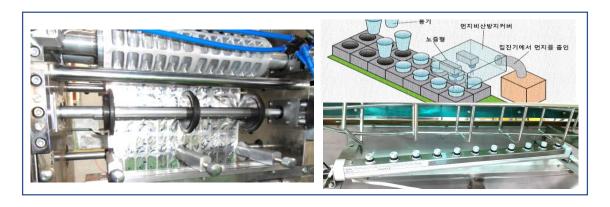
ౡ 도장면 두께 불균질 발생

◆ 도장면 잉크 입자 비산

4. 적용 IONIZER

- ♂ 잉크번짐 현상 발생 방지
- ❤ 도장면 두께 불균질 발생 방지
- ❤ 도장면 입자 비산 방지

1. 적용공정: 이물제거 공정


2. 적용산업: 제약, 일반산업(용기, 필러, 컵)

3. 트러블 포인트 : 이물 혼입, 씰링불량

◆ 타블렛 트레이 이물 혼입

→ 공병(용기) 이물 혼입

☆ 컵,홀더이물혼입

4. 적용 IONIZER

- ❤ 이온화 공기를 분사하여 정전기제거와 동시에 이물을 제거
- ☞ 트레이 포켓 내부 정전기제거로 소자 위치 안정화
- ❤ 먼지등 이물 혼입 방지

1. 적용공정: 사출 성형 공정(용기)

2. 적용산업: 일반산업(용기, 필러, 컵)

3. 트러블 포인트: 이물 부착, 작업성감소 발생

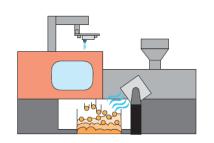
ᢝ 공병(용기) 이물 부착

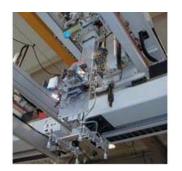
♣ 사출 금형 장입전 위치 이탈

4. 적용 IONIZER

- ✓ 사출 금형 안정적 위치 장입
- 장 공병(용기) 위치이탈 넘어짐 없음

1. 적용공정: 사출 성형 공정(부품)


2. 적용산업: 일반산업(소자, 캡, 패킹 등)


3. 트러블 포인트: 금형에서 분리시 배출 불량발생

₩ 배출시 정전기에 의한 비산및 주면 붙음 발생

☆ 정전기 부착력에 의한 이물 부착

◆ 적재된 사출 배출물 정전기누적으로 전격 발생

4. 적용 IONIZER

- 배출시 정전기에 의한 비산및 주면 붙음 감소
- ☞ 정전기 부착력에 의한 이물 부착 방지
- ✔ 적재된 사출 배출물 정전기누적으로 전격 발생 없음

1. 적용공정 : 부품이송(파츠피더) 공정

2. 적용산업: 반도체, 일반산업

3. 트러블 포인트 : 겹침, 이탈, 비산등 작업성감소 발생

◆ 진동 마찰 정전기에 의한 겹침으로 이송로 진입 방해

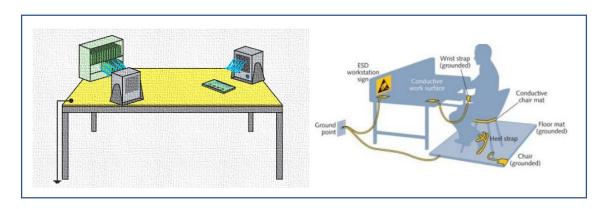
◆ 진동 마찰 정전기에 의한 파츠피더 이송로 이탈

∿ 진동 마찰 정전기에 의한 파츠피더 외부로 비산

4. 적용 IONIZER

- ✓ 소자의 정전기에 의한 겹침 발생감소
- ♥ 파츠피더 이송로 이탈 없음
- ❤ 파츠피더 외부로 비산 없음

1. 적용공정 : 수삽 (Hand Work) 공정


2. 적용산업: 전자산업, 일반산업

3. 트러블 포인트 : 소자, PCB 회로 파괴, 성능저하.

인체 정전기 노출에 의한 민감 소자 성능 저하

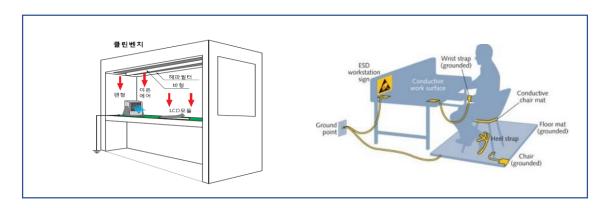
PCB, IC, CMOS, VMOS, IGBT소자의 정전기에 의한 회로 파괴

PCB, IC, CMOS, VMOS, IGBT소자의 내부 회로의 열화로 성능저하

4. 적용 IONIZER

- 인체 정전기 노출에 의한 민감 소자 성능 저하 방지
- PCB, IC, CMOS, VMOS, IGBT소자의 정전기에 의한 회로 보호
- PCB, IC, CMOS, VMOS, IGBT소자의 내부 회로의 열화 방지

1. 적용공정: 클린벤치 공정


2. 적용산업: 연구소, 클린룸

3. 트러블 포인트 : 소자, PCB 회로 파괴, 성능저하.

₩ 인체 정전기 노출에 의한 민감 소자 성능 저하

♣ PCB, IC, CMOS, VMOS, IGBT소자의 정전기에 의한 회로 파괴

❤ PCB, IC, CMOS, VMOS, IGBT소자의 내부 회로의 열화로 성능저하

4. 적용 IONIZER

- ✔ 인체 정전기 노출에 의한 민감 소자 성능 저하 방지
- ❤ PCB, IC, CMOS, VMOS, IGBT소자의 정전기에 의한 회로 보호
- ✓ PCB, IC, CMOS, VMOS, IGBT소자의 내부 회로의 열화 방지

1. 적용공정 : 포장(Packing) 공정

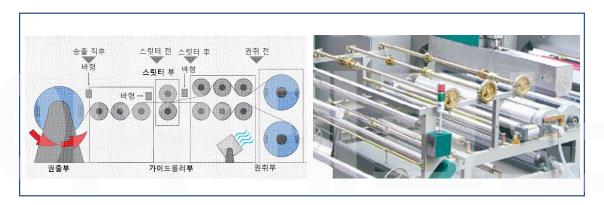
2. 적용산업: 제약, 제과, 전자산업

3. 트러블 포인트: 이물 혼입, loss증가, 작업성감소

◆ 설비 및 주변 제품 오염

4. 적용 IONIZER

- ❤ 포장재 씰링(마감) 불량 감소
- 절비 및 주변 제품 오염 없음


1. 적용공정 : 부직포 원사 생산공정

2. 적용산업 : 일반 산업

3. 트러블 포인트 : 롤러 제품간 박리정전기 발생

ᠰ 언와인딩(Unwinding)시 롤러에 말림 발생

→ 리와인딩(Rewinding)시 롤면 고르지(Uneven)못함 발생

4. 적용 IONIZER

- ❤ 언와인딩(Unwinding)시 롤러에 말림 발생 없음
- ◇ 리와인딩(Rewinding)시 롤면 정렬

1. 적용공정 : 원단 염색, 날염, 후염 공정

2. 적용산업: 일반 산업

3. 트러블 포인트 : 건조로 내부 마찰정전기 발생

4. 적용 IONIZER

- ❤ ESD 마크(탄흔) 발생 방지
- ✓ 리와인딩(Rewinding)시 롤면 말림 없음
- ✓ 롤러와 롤러간 들뜸처짐 (Sagging) 발생 없음

1. 적용공정 : 커피 원두 가공 공정

2. 적용산업: 식음 산업

3. 트러블 포인트 : 로스팅, 이송, 적재함 마찰정전기 발생

♪ 이송 관로내 고압 정전기 발생 작업성저하

4. 적용 IONIZER

- ✓ 건조로 토출시 방전에 의해 원두스파크(탄흔) 억제
- ◇ 이송 관로내 고압 정전기 발생 억제
- ❤ 적재함내 원두 정전기 누적 방지

1. 적용공정: 플라스틱 파쇄공정

2. 적용산업: 일반 산업

3. 트러블 포인트: 고속 마찰에 의한 마찰정전기 발생

♪ 이종 혼합 시 균질도 저하 발생

4. 적용 IONIZER

- ✓ 대전된 펠렛의 내벽 부착 발생 감소
- ❤ 이물질 부착으로 발생 감소
- ◇ 이종 혼합시 균질한 믹싱 가능

1. 적용공정: 정밀계량 정밀계측

2. 적용산업: 식음산업, 화학산업

3. 트러블 포인트: 정전기력에 의한 계량 편차발생

₩ 작업 공간내의 정전기 영향

♣ 작업 도구의 정전기 영향

∿ 원료와 트레이와의 이종 재질마찰시 정전기 발생

● 정밀계량 미세계량 정밀계측 미세계측 영향요인

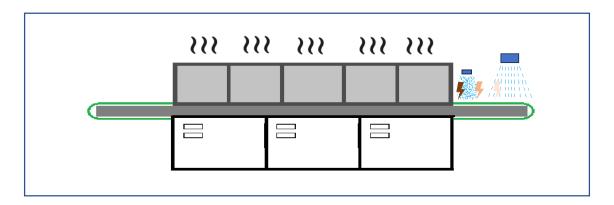
○ 전자기적 : 정전기영향, 자기자계영향

○ 물리적 : 온도영향, 습도영향,대기압영향, 공기대류영향

○ 외적요인 : 지각진동영향, 태양풍영향

4. 적용 IONIZER

- ❤ 작업 공간내의 정전기 저감
- ◇ 작업 도구의 정전기 영향 감소
- ☞ 원료와 트레이와의 이종재질 마찰시 정전기 발생 감소



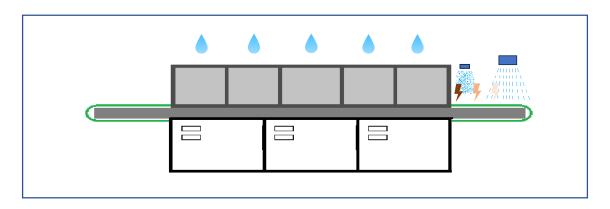
1. 적용공정: 고온 건조로 공정

2. 적용산업: 일반산업

3. 트러블 포인트: 큐어링시 고온에의한 정전기발생

산 건조로 토출시 위치 이탈 발생

4. 적용 IONIZER


- ✓ 건조로 토출시 방전에 의해 제품 스파크(탄흔) 발생 없음
- ✓ 건조로 토출시 방전에 의해 이물 부착 저감
- ✓ 건조로 토출시 위치 이탈 발생 없음

1. 적용공정 : 세정 건조 공정

2. 적용산업: 일반산업

3. 트러블 포인트 : 세정시마찰 건조시정전기발생

4. 적용 IONIZER

- ✔ 세정시 발생하는 마찰로 인한 정전기 발생 감소
- 세정후 건조 시 방전에 의해 이물 없음
- ✔ 세정기 토출시 위치 이탈 발생 없음